Bootstrap Methods for Time Series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrap Methods for Time Series

The chapter gives a review of the literature on bootstrap methods for time series data. It describes various possibilities on how the bootstrap method, initially introduced for independent random variables, can be extended to a wide range of dependent variables in discrete time, including parametric or nonparametric time series models, autoregressive and Markov processes, long range dependent t...

متن کامل

Bootstrap Methods for Time Series

The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one’s data or a model estimated from the data. The methods that are available for implementing the bootstrap and the accuracy of bootstrap estimates depend on whether the data are a random sample from a distribution or a time series. This paper is concerned with the application of the boots...

متن کامل

Bootstrap Methods for Time Series

The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one’s data or a model estimated from the data. The methods that are available for implementing the bootstrap and the accuracy of bootstrap estimates depend on whether the data are a random sample from a distribution or a time series. This paper is concerned with the application of the boots...

متن کامل

Sieve Bootstrap for Time Series Sieve Bootstrap for Time Series

We study a bootstrap method which is based on the method of sieves. A linear process is approximated by a sequence of autoregressive processes of order p = pn, where pn ! 1 ; p n = on as the sample size n ! 1. F or given data, we t h e n estimate such a n A R pn model and generate a bootstrap sample by resampling from the residuals. This sieve bootstrap enjoys a nice nonparametric property. We ...

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Statistical Review

سال: 2003

ISSN: 0306-7734,1751-5823

DOI: 10.1111/j.1751-5823.2003.tb00485.x